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Diffusive Transport Enhancement and 
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The time-dependent escape rates and evolution of a distribution density are 
considered for a Hamiltonian many-dimensional nonlinear oscillator with exter- 
nal noise. The Hamiltonian dynamics is assumed to be nearly integrable and is 
described in terms of isolated nonlinear resonances. In case of a small angle 
between the resonant oscillations and the resonance line, a dynamic enhance- 
ment of diffusion occurs inside the separatrix, leading to a strongly enhanced 
growth of distribution tails and escape rates even when the resonances are 
relatively narow. The underlying mechanism of the phenomenon is essentially 
many-dimensional. 

KEY WORDS: Nonlinear resonance; distribution function; weak-noise 
asymptotics. 

1. I N T R O D U C T I O N  

The s tudy of dynamica l  systems ( represented by o rd ina ry  differential  
equa t ions )  under  the influence of  noise const i tutes  a significant pa r t  of the 
act ivi ty  of s ta t is t ical  physics.  A par t i cu la r  class of p rob lems  of  this k ind is 
the set of  l a rge-devia t ion  (or  rare events)  p rob lems  (see, e.g., ref. 1 for 
review). In  this ca tegory  fit all the so-cal led "escape rate" problems,  where 
the phase  space of  a de terminis t ic  system is decomposed  into several basins  
of a t t rac t ion ,  with a t t r ac to r s  being stable poin ts  or  l imit  cycles. The quan-  
t i ty of interest  there is the rate  of  escape of part icles,  under  the influence 
of noise, f rom one a t t r ac to r  to ano the r  or  to an abso rb ing  boundary .  ~1) 

In the present  paper ,  we cons ider  the same d is t r ibut ion- ta i l s /escape-  
rate  p rob l em in quite a different s i tua t ion  when the determinis t ic  system is 
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Hamiltonian (i.e., has no damping). As some damping is always present 
together with the noise in realistic systems (as quantified by the fluctuation- 
dissipation theorem in the case of systems in thermal equilibrium), the 
analysis of escape rates while neglecting damping is applicable only for 
times much smaller than the relaxation time. 

The present study focuses on the tails of distribution, which are 
responsible for the particle escape to the distant boundaries. Mathemati- 
cally, these tails can be described in the same way as in the weak-noise 
asymptotic (WNA) for conventional nonequilibrium systems (with damp- 
ing), (2) as p = Z exp(-~b/t/), where Z and ~b are both functions of the phase 
space variables and time, while tt is a small general factor related to the dif- 
fusion intensity. The (time-dependent) escape rate r out of some boundary 
(from given initial conditions) can be found in the weak-noise approxima- 
tion as r = R e x p ( -  G/q), where G is the minimum of ~b on the boundary. 

In the present paper, the "tails" of the probability density distribution 
and the escape rates are studied for the Hamiltonian nonlinear oscillator 
with external noise. The Hamiltonian is assumed to be not exactly 
integrable, but only nearly so, i.e., consisting of an exactly integrable time- 
independent part and a small perturbation that may have a periodic 
dependence on time. Generically, such perturbations are known ~ to drive 
nonlinear resonances, which constitute an everywhere dense net. The 
essential question then is, how do the resonances affect the evolution of 
distribution tails and escape rates? We find that the situation is quite 
different for the 1D case (one spatial coordinate) and for higher dimen- 
sionalities. Indeed, in 1D the only spatial scale associated with each 
resonance is its width, which is proportional to the square root of the 
perturbation strength e. It is quite natural therefore that the perturbation 
of ~b by resonances, A~b = ~b- ~bo (the difference of ~b's with and without 
resonances) in 1D should be of the order of ~ and thus small for small e. 

In 2D and higher dimensions, the resonances are surfaces (or lines) in 
the action space, and the possibility of the particles to diffuse along them 
while staying inside the separatrices changes the situation drastically. The 
major reason for this is a certain "renormalization" of diffusion inside 
separatrices, leading to an increase of the component of diffusion intensity 
along the surface. This can be explained, in 2D for simplicity, as follows. 
In the plane of actions Ix, Iy, where resonances are lines, one can draw the 
arrow of separatrix oscillations, which shows the direction of trapped 
particle oscillations about the resonances line. The length of this arrow is 
the width of the separatrix (or twice the maximum oscillation amplitude) 
and its center is the resonance line (see Fig. 1). Now consider a small kick 
6 applied to a trapped particle in the direction orthogonal to the resonance 
line; it is clear that the center of oscillations will be displaced a distance 
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Fig. 1. The displacement of an inside-separatrix oscillation center by a transverse kick. The 
thick solid line is the resonance line. Dashed lines show the separatrix. 

6 cot(c 0 along the resonance line. Similarly, if we introduce noise of 
intensity q in this direction, the diffusion of the oscillation center along the 
resonance will have the diffusion coefficient ~/cot(e). Thus, for small angles 
c~ between the resonance oscillations and resonance line, diffusion is enhan- 
ced inside the separatrix. This enhancement was originally discovered and 
termed "resonance streaming" by Tennyson. (4) For escape rate and dis- 
tribution tail problems, it leads to a very strong effect, since the particles 
can travel long distances (as compared to small resonance width) along the 
resonance lines. The decrease of the function ~b by the effect of the resonan- 
ces is of the order of unity (or ~b-~b o ~ r even for small perturbation 
strength e as long as e>>r/, which is a drastic exponentially strong 
amplification of the effect as compared to 1D. In this respect, the situation 
is quite similar to the escape rate and distribution function behavior in an 
oscillator with nonlinear resonances, damping, and noise, (5) where both 
damping and diffusion are "renormalized" within the separatrices. 

In Section 2 we derive the average Fokker-Planck equation (FPE) in 
the vicinity of a nonlinear resonances, using the relative smallness of the 
diffusion intensity. In Section 3, we construct the WNA solution of that 
equation. As that solution is applicable only at short times, in Sections 4 
and 5 we develop a modified WNA and its phenomenological solutions 
that are applicable at all times. 

The general approach of the suggested theory is quite similar to that 
of ref. 5 for the steady-state distributions in the same type of system, but 
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with damping. The present case of zero damping cannot be obtained, 
however, as the limiting case of that theory for vanishing damping, since 
the steady-state problem implies taking the limit t ~ oo first. 

2. L O C A L  FPE 

Our primary system of consideration is the two-dimensional 
Hamiltonian oscillator with external noise: 

(1) 
0U(x, t) ~- (2t/)1/2 ~(t) 

P-  ~x 

where t/is the diffusion intensity. ~i(t) here is the white-noise vector process 
(~i(t) ~k( t+z))=bi~b(Z) .  We suppose that the potential U consists of 
an unperturbed time-independent part Uo(x), corresponding to exactly 
integrable motion, and a small perturbation e6U(x,t), either time- 
independent or time-periodic with frequency s The basic problem in 
which we are interested is how this small perturbation can affect the 
growth of distribution tails and escape rates. Escape rate processes come 
into play when the potential Uo has several local minima or when an 
absorbing boundary is present in the x space. (1) 

The Hamiltonian dynamics of the system (without noise) is nearly 
integrable for small ~. Following a standard approach, the Hamiltonian 
should be presented in action angle variables of the unperturbed system: 

H = no(I) + e ~ v,,(I) cos(/- 0 - not) (2) 
L n  

where Ho=p2/2+ Uo(x) and the perturbation was expanded in Fourier 
series in both 0 and t. Each harmonic Vtn excites a nonlinear resonance on 
the line l . v ( I ) - n O = O ,  where the frequence v is v=SHo/SI. (3) The 
amplitude of oscillation of I at the separatrix defines the "resonance width" 
AI in I space and is proportional to ~ (see below). The resonant 
Hamiltonian can be obtained by dropping all the nonresonant harmonics, 
introducing new (canonical) variables 

i _Iy 
1 - -  ly 

I2 = --Ix + ~ Iy 
(3) 

~bl = lxOx + lyOy - not  

02 = - 0 ~  
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and expanding the Hamiltonian H0(I ) to second order in deviations in /1  
from the center I~o(I2). (3) The result is 

2 

H =  2 ~ +  ~V m cos(~/1 ) (4) 

where 2 = O(lxv x + lyvy) /~I  I and m = (/, n). The resonance width, which is 
the amplitude of oscillations of Pl on the separatrix of pendulum (4), is 

1/2 

p l r = 2  (5) 

Now consider the effect of noise. The evolution of the distribution 
of particles, corresponding to the primary equations of motion (1), is 
governed by the FPE (6) 

0p ~3( Uo + eSU) 3p ~?Zp 
+ P 0 x ~  0x ~3p = r/dp2 (6) 

We will be constructing the solution of the FPE (6) under a set of 
limitations on the parameters. First, we will suppose that the Hamiltonian 
part of the dynamics can be well described in terms of isolated nonlinear 
resonances, so that the resonances do not overlap. This is true under the 
condition (elVm2l)l/2~Vm, where v m is the smallest component of the 
frequency v. (3) Second, we will be interested only in the tails of the distribu- 
tions, which means that the characteristic energies E =  H o and times of 
observation T should satisfy the condition E/rlT>> 1. The use of the WNA 
in Section 3 to describe the effect of nonlinear resonances is possible only 
under an extra condition of not too large a time t: t ~ plrI/tlQ (where Q 
and I are the characteristic values of the components of Q• and Ifl. This 
condition was relinquished in Section4, where the general case was 
considered, albeit through a phenomenological approach. Third, we 
suppose that the diffusion in our system is a slow process relative to both 
the unperturbed motion (time scale q ,-~ 1lyre) and the resonant oscillations 
[-time scale % ,-~ (el Vm~. ] )--1/2"1. The last condition is more restrictive and is 
obtained by requiring that the rms time ~ required to shift the particle by 
diffusion to the distance equal to the resonance width (5), r~p~r / t  l, is 
much larger than %: 

(~ [ Vml )3/2 >~ Z1/2r/ (7) 

This inequality, as well as the previous one, holds for small enough noise 
intensity q. 
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In the case of a slow diffusion, the distribution becomes constant along 
the Hamiltonian trajectories in a short time, allowing for the "thermal 
averaging" reduction of the FPE (7) (also known (6) as the fast variable 
elimination in the FPE in the more general context). In ref. 5, such 
averagings were performed in a similar FPE that included damping. 
Following this reference, we transform first the FPE (6) to the unperturbed 
action-angle variables I, 0 and (supposing the distribution p depends only 
on ~bl and not on ~2) average it over both "fast" phases 0, keeping the 
"slow" phase 0a contant. This yields 

( St) 
+8Vmsin~bl lx77-r +ly +(Ixvx+lyvy--ns 

84,, 

8 8p Z 82p + 82P 
=~]-~kGOkl~ll'-}-llR1 .-[-I~R2-~---~I 11R3k 81kSl/j~ 1 (8) 

Here, only the resonant harmonic of the Fourier expansion in Eq. (2) was 
retained. The thermal-averaged diffusion tensor Gokl(Ix, Iy) is 

_1 (2~ ~,z,~ 8Ik(x , p) 8Iz(x, p) 
Gok,-- ! dOx dOy (9) (2~) 2 0o 8p, 8p, eo 

where the quantities under integration are expressed i n / ,  0 variables after 
differentiation, and summation over the repeated indices is implied. The 
quantities R~ through R3k in (8) are other averages of the type (9) and are 
not given explicitly, since the corresponding terms drop out in subsequent 
transformations. Note also that the FPE (8) is local and is applicable only 
in the vicinity of a chosen resonance. 

The FPE in the variables pl ,  12, 01 is the same as that of ref. 5 except 
for the damping terms, which are absent in our case: 

8p 
~l k ~P l Z k g Vm sin ~J l sp-~l 

=q IO11 82/9 ' 2Q21 8 
8 8 8 2 

(10) 

where ~(I2)=0Ilo/812 [11o(12) is the resonance line]. The quantity P 
contains a derivative of p with respect to ~bl that drops out later. The 
diffusion tensor Qu in (I1, I2) space is a linear transformation of the tensor 
Gok/in Ix, Iy space. In the simpler case of uncoupled degrees of freedom in 
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the unperturbed Hamiltonian H0, the tensor Gokt can be easily found (5) to 
be 

Gokt = 6gl I~ (11 ) 

where Vk(Ik)= 8Ho/8Ik; there is no summation in k. The Q tensor is given 
then by 

I1 
Q l l  ll vy 

lxI1 
Q21 - -  lyvy 

(-I2 + lxI~) Q 22 - -  
Vx 

12 
+ -x i1 

ly Vy 

(12) 

3. W E A K - N O I S E  A S Y M P T O T I C S  

If all the parameters, including e Vm, are fixed while the noise intensity 
t/ is asymptotically small (so that t/Q ~ plrI--see Section 4), the distribu- 
tion function in the regions of the phase space where it was initially set zero 
can be presented in the standard WNA form: 

p(pl, I2, tPl, t, rl) = Z(p~, I2, ~ ,  t) exp ( - (b(pa' I2' ol' (13) 

The escape rate r in the presence of absorbing boundary F somewhere 
in the initially unpopulated part of the phase space is known from the 
general WNA theory (2'6) to have the asymptotic form 

r(t)= F(t)exp ( -  ~-~ ))  (14) 

where the quantity R is just the minimum of the function ~b(x, t) (x here is 
the phase space Pl, g t ,  I2) on the boundary F: 

R(t) = min ~b(x, t) (15)  
XEF 

The partial differential equation for the function ~b that defines the 
exponentially small factor in (13) is obtained from the FPE (10) by 
substituting the form (13) and singling out the highest powers of l/r/, 
yielding 

822,/72/3-4-10 
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~t + 2Pl ~-~l + eVm sin Ol -~p 1 

( 8q~,]2 _ 2Q21 0q~ [ c~q~ c3~b "~ //c3~b 8~b ~2 c~qt 
=-Qal\(?pl j ~p~ ~-~2-~C-~p~)-Q221~-i~2-~C-~p~) + ~ R  

(16) 

where R is some linear form in the gradients of ~b and drops out later. This 
equation is the Hamilton-Jacobi equation (HJE) and can be solved 
through the method of characteristics. With that method, the solution with 
the initial condition ~b = oo in the initially unpopulated region of the phase 
space can be presented (2'6) in the variational form 

f; ~b(x, t) = min d~ L()}(~), if(r)) (17) 
~z(t) 

where the trajectories 2(z) start on the border of the unpopulated region 
and end at the point of observation )?(t)= x. The Lagrangian L in the 
expression (17) is related to the Hamiltonian H of the HJE (16) through 
the standard transformation 

8L(2, )~) 

8s (18) 
8L 

The derivation of the HJE (16) was based on conventional techniques 
and did not contain any new approaches. The difficult part of the problem 
starts here and has to do with the nonperturbative nature of the 
dependence of the solution ~b on the small parameter 5. Generally, one 
expects a discontinuity in this problem at e = 0, i.e., 

Oo(p~,Iz, t)=lim(b(p~,I2, ~P~,t,e)r t) (19) 
~ 0  

where ~bun is the unperturbed solution ~b for e = 0. Mathematically, this 
discontinuity is associated with taking the limit tl ~ 0 before the limit e ~ 0. 
The physical explanation is~that an arbitrarily small e introduces a 
topologically distinct structure of the phase space (nonlinear resonance) 
that strongly affects the solutions of the HJE in spite of occupying a small 
~ x / 7  phase-space volume. More specifically, the diffusion acts quite 
differently inside the separatrix of the resonance; the phenomenon was 
originally described from a single-particle perspective and is called 
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"resonance streaming. ''(4) In systems with damping, one observes a similar 
amplification of the effect of perturbation on the escape rates in the many- 
dimensional case3 ~) There, it can be viewed as a stronger and qualitatively 
different type of "stochastic resonance" effects in many-dimensional systems 
as compared to the conventionally discussed one-dimensional case (see, 
e.g., ref. 8). 

We will be calculating the leading-order quantity ~b o through what can 
be viewed as a version of singular perturbation theory. Notice that as 
q~ =~b0t is independent of the phase ~'1 and therefore time t, all relevant 
quantities (distribution function, escape rates) are singularly strongly 
perturbed and in the leading logarithmic approximation have a simple 
scaling with time. Similar to the normal nonsingular periodic modulation 
of escape rates and distribution functions in overdamped systems with 
periodic driving, (8) our system also has such modulations, but they can be 
neglected as a higher-order effect. 

The calculation of the singular-limit function ~bo will be based on 
the empirical assumption that one possible class of solutions of the HJE 
(16) has the following leading-order (in powers of e) behavior inside the 
separatix of the resonance: 

fb(I2, pl, Ol, t)=qko(I2, t)+R(I2, t)H(pl,I2, Ol ) (20) 

where H is given by Eq. (4). More consistent, but much more tedious 
calculations can be carried out based on the variational representation (17) 
along the same lines as in ref. 5 for a similar system with damping. 
Plugging the solution (20) in Eq. (16) and isolating the lowest-order terms 
in e, one obtains 

2 /21 t  0t - Q22\OI2j 

Everywhere outside of the separatrix, the function ~b o quite naturally obeys 
the unperturbed (V m = 0) HJE (16), which is more natural to present in the 
original variables I x,/v:  

 22, 

Thus, the evolution of ~bo in the I plane has to obey Eq. (22) with the 
boundary condition on a section of the resonance line Im(I2) that is defined 
by Eq. (21). The section of the line that provides the boundary condition 
has to be found self-consistently from the condition of minimizing the 
values of ~b o on the line. Recall that we are considering the growth of tails 
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in the initially unpopulated areas (p = 0, ~b = oo ). The time dependence of 
~b o that satisfies these initial conditions and both HJEs (21) and (22) is 
~bo(I, t ) =  (p(I)/t. Note also that the same time dependence is true for the 
unperturbed solution ~bun(I, t) = (pun(I)/t. Then, the variation of q~ along the 
section of the resonance line is found to be 

q~r(I2) = [~~ 1/2+ 1/2 (23) 
1, [Q22(I;)] 

where I 2-=I s demarcates the point between the "active" section of the 
resonance [where q) is defined by expression (23)] and the "passive" one 
[where q~ is unperturbed, ~o = ~0u,(I)]. 

The quantity /2 = I, from the above-formulated minimization condi- 
tion is the solution of the equation 

d(Pun(II~ Iz) = L[q~"(/l~ I2)] 1 /2  (24) 

From the same argument, one obtains the condition of the strong 
(singular) perturbations q~ r ~0u, by the resonance in the form of the 
inequality 

d(Pun(Ilo(IZ),di2 I2) >/L[~~176 I2)J ] 1/2 (25) 

which has to be satisfied on some part of the resonance line. 
In the I plane, the equation for the function ~0 is obtained from the 

unperturbed HJE (21) to be 

0~o &p 
~o = G o ~ t -  - -  (26) 

~I, e l  k 

Now, one can construct the function q) from the minimization principle 
(17) by introducing the function •(I) that is the continuously differentiable 
solution of the unperturbed HJE (26) subject to the boundary condition 
(23). The function q~ is implicitly defined by these boundary conditions 
through the standard characteristics method solution and therefore will 
be considered as known. The minimization then reduces to taking the 
minimum between the unperturbed function q~u, and the function ~: 

r = min(~o~.(I), (/5(1)) (27) 

This is our final expression for the logarithmic asymptotics of the distribu- 
tion tails q~=lim,~o~/tln(p).  The function ~0 defined in this way is 
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continuously differentiable in separate regions of the plane I where ~0 = ~0un 
or ~o = qS, with the discontinuities in the derivatives on the boundaries of 
the regions. The discontinuities in the derivatives are a generic feature of 
the WNA in dissipative systems in general (9) and are present as well in the 
equivalent of our system with damping. ~176 

The formulas (23) and (27) can be easily generalized to include the 
case of several "active" sections on one resonance line and/or several 
resonance lines. That generalization can be done similar to the approach of 
ref. 5 for a like system with damping. Applying formula (15) in the leading 
logarithmic approximation, the escape rate r is defined by the minimum of 
the function ~o of (27) on the absorbing boundary r ~ exp(--(Pmin//'lt). 

4. MODIF IED WEAK-NOISE ASYMPTOTICS 

The WNA analysis of Section 3 is limited by the condition of not too 
large a time t, since the characteristic random shift A I=  (rlQt) 1/2 has to be 
less than the relevant smallest relevant dynamical scale of the problem. 
This scale is associated with the small resonance width and turns out (see 
below) to be (Iplr) 1/2, SO that the restriction on time t is t ~ p~,I/tlQ. Since 
it takes much longer, tl ~I2/tlQ, for the particle to diffuse a distance I 
(escape), the problem of the tail growth at times I2/tlQ > t >> p~rI/tlQ, when 
the WNA breaks down on the small scale of the resonance width, is 
relevant and will be addressed in this section. 

The breakdown of the WNA occurs only in the vicinity of the 
resonance I i - I l o ( I 2 ) ~ P l r .  Therefore, in that vicinity we present the 
distribution function p in the limit of small noise t/--+ 0 and small resonance 
width P*r ~ q in the partially asymptotic form 

P ( P l ' I 2 ' ~ " t ' ~ 1 ) = Z ( P l ' I 2 ' ~ l ' t ' t l ) e x p (  ~b(Iz't))t/ (28) 

Here, the variation along the resonance line has a normal exponential 
form [ ( I /Z )  ~ Z / ~ I  2 --+ const, ( I /Z)  OZ/& ~ const for r/--+ 0], while the 
dependence on transverse variables Pl,  g* was left unrestricted. The method 
of using this generalized WNA was proposed in ref. 7 for a system with 
damping. Substituting expression (28) in the FPE (10) and singling out the 
highest degrees of 1/~/, one arrives at 

LHZ= ~q-b ~p I c~l~p21 Z+~F 1 -  
E Z  c~Z 

C~pl a ~  1 -}" F 2 q  63t~ 1 (29) 
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where q = O(~/OI2, r,~i is the Liouville operator 

OH 0 OH 0 
LH -- Op 1 01p, 001 0p1 

of the resonant Hamiltonian (4). The notations a, b, c were introduced for 

00 
a(I2, t) = Q22 ka12] + -~ 

o~ (30) b(I2, t) = 2(~cQ22 - Q21) 012 

c(I2) = Qll + Q22 ~c2- 2Q21 

where all Qo generally depend on 12. Note that the derivative OZ/Ot does 
not enter Eq. (29). The quantities F1,/72 originate from the last term in the 
FPE (10) and will drop out in subsequent calculations. 

Utilizing condition (7) of diffusion slowness relative to the resonant 
dynamics, one can now perform the second stage of thermal averaging 
along the trajectories of the Hamiltonian H, Eq. (4). The procedure is the 
same as in ref. 5--we suppose that the function Z depends on Pl and 01 
only through the action J(H) for the Hamiltonian H of (4) and average 
Eq. (29) over time. The resulting equation is 

rl -~ b f  +ctlG(J ) Z = 0  (31) 

where 

F(J) =/~J(Pl: t)l)\  
\ @~ / 

G( t = (  (~ / 
(32) 

The symbol (-- .> here implies the averaging over time along the 
trajectories of the Hamiltonian H. Notice also that the last two terms in 
Eq. (29) vanished under the averaging. 

A specific class of solutions of Eq. (31) is defined by the conditions of 
the function Z(J(H)) to have a maximum at the center of the resonance 
H=-eIVml and going to zero for H--.  oo both above and below the 
resonance. The requirement of compatibility of these conditions gives a 
relation between the constants a, b, and c that is the HJE for ~b. Techni- 
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cally, however, Eq. (31) is intractable, since the quantities F and G are 
expressed through elliptic integrals. (7) One way of handling this problem 
is the phenomenological simplification of functions F(J) and G(J) as 
suggested in ref. 10. 

5. P H E N O M E N O L O G I C A L  A P P R O A C H  

Following the approach of ref. 10, we simplify the functions F(J) and 
G(J) by substituting the exact trajectories of the pendulum (4) by simplified 
trajectories shown in Fig. 2, and subsequent averaging in Eq. (29) along 
these trajectories. 

Equation (29) is formally the same as that of ref. 10, while the 
difference is in the definition of coefficients a and b in (30). Therefore we 
can use all the intermediate calculations from ref. 10. The resulting one- 
dimensional HJE, defining the relation between ~(~/c3t and ~0/~312, is 
Eq. (32) of ref. 10, which reads 

I2(b2-4ac)]l/2=tanI(2a)l/2~-~l (33) 

where k is a phenomenological constant of the order of unity. For the 
regime with large resonance width P lr and small noise r/ one recovers the 
WNA result, since the solution a = 0  of Eq. (33) is the same as Eq. (21). 

b 

lID 

I = = I l 
4 1  

'11 

Fig. 2. "Simplified" trajectories approximating pendulum trajectories of the nonlinear 
resonance. 
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The condition of applicability of this solution is obtained by estimating 
a ~ aO/dt ~ AI2/Qt 2 to yield 

Plr> Qt (34) 
#1 1/21 --/2ol 

where Q is the characteristic value of the components of Qo and t is the 
time allowed for the transition alonog the line from 12 =/2o to /2  = 120 + AL 

Equation (33) is the one-dimensional HJE for the evolution of ~b on 
some self-consistently chosen section of the resonance line, as it implicitly 
defines d(~/dt as a function of O~/dI2: 

ao~ G 12, (35) 
dt 

To gain a qualitative insight into the nature of this equation, one can 
use the condition that the arguments of the square roots in both the rhs 
and lhs of Eq. (33) are positive, yielding the inequality 

where 

(a(J~ 2 d~7 t Q'(d(~) 2 (36) 
022 \d /2J  < < \d/21 

Q,_ Qll Q22 - Q], 
Qll - 2~cQ21 + rc2Q22 

This inequality is indicative of the crossover of the solution of Eq. (32) 
from a small resonance width Plr to a large one. Indeed, for small Pl, and 
large transition time t it becomes bZ-4ac=O, or dqJ/dt=-Q'(d(9/d/2)2; 
while for large Plr and small transition time t, it becomes a =0,  or dO/at= 
--Qi2(dO/dI2) 2. Thus, for the effective diffusion intensity along the line one 
has a crossover from the value r/Q' in the former case to the value ~/Q22 in 
the latter I-note that the condition Q ' >  Q22 is weaker than the necessary 
condition (25)]. The meaning of the quantity Q' is that of an elective diffu- 
sion along the resonance line in the absence of resonance, defined through 
the WNA of the transition probability between two close points on that 
line. 

As with the WNA, one has to solve the one-dimensional HJE (34) in 
conjunction with the unperturbed HJE (21) in the I plane. Again, a self- 
consistently found section of the resonance line will provide the boundary 
condition for the HJE in the plane. The procedure will be more involved, 
however, since there is no simple time dependence ~b = ~o/t. Similarly to the 
WNA case of Section 3, one can proceed from the minimization principle 
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of the type (17) by using it in its "reduced" two-dimensional form. Then, 
the characteristics I(~) have the Lagrangian L corresponding to the unper- 
turbed HJE (20), while the characteristics going along some section of the 
resonance line have the one-dimensional Lagrangian corresponding to the 
HJE (35). The "active" section of the resonance line and the value of ~b on 
it have to be found from the minimization condition 

Or(I2't)=min((Pun(Is)q.ls \ t-- t I +~r(Is ' I2 ' t l ) )  (37) 

where the first term is the contribution from the unperturbed characteristic 
coming from the initially populated region to the point on the resonance 
line 12 = Is, and the second is the contribution from the characteristic along 
the resonance line. Notice here that unlike the WNA case, the "active" 
section changes in time, as I s will depend on t. The quantity q~r is defined 
as the solution of the one-dimensional HJE (35) with the initial and 
boundary conditions q~r(/~, I2, t = 0 ) =  o% q~r(/~, / , ,  t )=0 ,  and is defined 
implicitly through the standard characteristics method. For the purpose of 
illustration, consider the case when Qo are constant, so that the function G 
in Eq. (35) does not depend on I2. The function q~r then is found to be 

~r(I~, 12, t) = p(I2 --Is) + tG(p) (38) 

where p is the solution of the equation 

dG 
I2 - I, = - t  ~pp (p) (39) 

One can introduce now the function ~ that is implicitly defined as the 
characteristics method solution of the unperturbed HJE (21) subject to 
the boundary condition (37). The final expression for the function ~b in the 
plane I is similar to formula (27) of Section 3: 

~b(I, t) = min \t'((Pun ~(I, t)) (40) 

6. D I S C U S S I O N  A N D  C O N C L U S I O N S  

We described the growth of the distribution tails in a two-dimensional 
Hamiltonian system with external noise. This growth can be strongly 
accelerated due to an enhanced rate of diffusive transport of particles along 
the resonances. The basic scenario of diffusion enhancement inside the 
separatrices in.the case of a small angle between the resonance line and the 
resonance oscillations direction was previously described in the literature 
and termed "resonance streaming. "(4) However, the single-particle calcula- 
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tion of "renormalized" diffusion intensity inside the separatrix (4) does not 
provide the essential information about the macroscopic transport  rate 
along the resonance and its overall effect 'on the distribution function. 
Consistent treatment of that kind is possible in the framework of the 
WNA, with a result that for short observation times confirms the single- 
particle estimate. (4) For  longer times, when the deviation of the particle on 
the scale of a resonance width becomes probable, the situation is more 
complex. The basic dynamic process that accounts in this case for the 
"macroscopic" transport  rate (i.e., observed on a scale much larger than the 
resonance width) is the diffusion of particles in the direction transverse to 
the resonance line. Because of the different longitudinal diffusion intensities 
inside and outside of the separatix, the transverse diffusion modulates the 
longitudinal one. This makes the effective one-dimensional random walk 
along the resonance line a more complex stochastic process, analyzed with 
the use of some phenomenological simplifications. 

In most physical processes the noise is coming from an interaction 
with a certain heat bath and is always accompanied by a certain amount  
of damping. Then, the present theory is applicable only when the damping 
can be neglected. This leads to the requirement of the observation time to 
be much less than the damping time. In the opposite case of much larger 
times one has a more conventional situation of a time-independent escape 
rate, and the effect of nonlinear resonances in such a system was analyzed 
in related work. ~5"1~ 
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